Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563166

RESUMO

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Assuntos
Surdez , Perda Auditiva , Lactente , Recém-Nascido , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Surdez/diagnóstico , Análise Mutacional de DNA , Transportadores de Sulfato/genética , Testes Genéticos , Mutação , Perda Auditiva/genética , Triagem Neonatal , China
2.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605287

RESUMO

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Assuntos
Conexinas , Perda Auditiva , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Conexina 30/genética , Conexina 26/genética , Conexinas/genética , Perda Auditiva/genética , Fenótipo , Mutação
3.
Artigo em Chinês | MEDLINE | ID: mdl-38297844

RESUMO

Objective:To analyze genetic factors and phenotype characteristics in pediatric population with slight-to-moderate sensorineural hearing loss. Methods:Children with slight-to-moderate sensorineural hearing loss of and their parents, enrolled from the Chinese Deafness Genome Project, were studied. Hearing levels were assessed using pure tone audiometry, behavioral audiometry, auditory steady state response(ASSR), auditory brainstem response(ABR) thresholds, and deformed partial otoacoustic emission(DPOAE). Classification of hearing loss is according to the 2022 American College of Medical Genetics and Genomics(ACMG) Clinical Practice Guidelines for Hearing Loss. Whole exome sequencing(WES) and deafness gene Panel testing were performed on peripheral venous blood from probands and validations were performed on their parents by Sanger sequencing. Results:All 134 patients had childhood onset, exhibiting bilateral symmetrical slight-to-moderate sensorineural hearing loss, as indicated by audiological examinations. Of the 134 patients, 29(21.6%) had a family history of hearing loss, and the rest were sporadic patients. Genetic causative genes were identified in 66(49.3%) patients. A total of 11 causative genes were detected, of which GJB2 was causative in 34 cases(51.5%), STRC in 10 cases(15.1%), MPZL2 gene in six cases(9.1%), and USH2A in five cases(7.6%).The most common gene detected in slight-to-moderate hearing loss was GJB2, with c. 109G>A homozygous mutation found in 16 cases(47.1%) and c. 109G>A compound heterozygous mutation in 9 cases(26.5%). Conclusion:This study provides a crucial genetic theory reference for early screening and detection of mild to moderate hearing loss in children, highlighting the predominance of recessive inheritance and the significance of gene like GJB2, STRC, MPZL2, USH2A.


Assuntos
Perda Auditiva Neurossensorial , Síndromes de Usher , Humanos , Criança , Conexinas/genética , Conexina 26/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Mutação , Perda Auditiva Bilateral , Audiometria de Tons Puros , Peptídeos e Proteínas de Sinalização Intercelular
4.
Artigo em Chinês | MEDLINE | ID: mdl-38297845

RESUMO

Objective:To elucidate the correlation between the GJB2 gene and auditory neuropathy, aiming to provide valuable insights for genetic counseling of affected individuals and their families. Methods:The general information, audiological data(including pure tone audiometry, distorted otoacoustic emission, auditory brainstem response, electrocochlography), imaging data and genetic test data of 117 auditory neuropathy patients, and the patients with GJB2 gene mutation were screened out for the correlation analysis of auditory neuropathy. Results:Total of 16 patients were found to have GJB2 gene mutations, all of which were pathogenic or likely pathogenic.was Among them, one patient had compound heterozygous variants GJB2[c. 427C>T][c. 358_360del], exhibiting total deafness. One was GJB2[c. 299_300delAT][c. 35_36insG]compound heterozygous variants, the audiological findings were severe hearing loss.The remaining 14 patients with GJB2 gene variants exhibited typical auditory neuropathy. Conclusion:In this study, the relationship between GJB2 gene and auditory neuropathy was preliminarily analyzed,and explained the possible pathogenic mechanism of GJB2 gene variants that may be related to auditory neuropathy.


Assuntos
Surdez , Perda Auditiva Central , Humanos , Conexinas/genética , Conexina 26/genética , Perda Auditiva Central/genética , Surdez/genética , Mutação
5.
Genes (Basel) ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38397168

RESUMO

Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births, with ~50-60% of those related to genetic causes. Technological advances enabled the identification of hundreds of genes related to hearing loss (HL), with important implications for patients, their families, and the community. Despite these advances, in Latin America, the population with hearing loss remains underdiagnosed, with most studies focusing on a single locus encompassing the GJB2/GJB6 genes. Here we discuss how current and emerging genetic knowledge has the potential to alter the approach to diagnosis and management of hearing loss, which is the current situation in Latin America, and the barriers that still need to be overcome.


Assuntos
Surdez , Perda Auditiva , Humanos , Conexinas/genética , Conexina 26/genética , Mutação , América Latina/epidemiologia , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Surdez/diagnóstico , Surdez/genética
6.
Sci Rep ; 14(1): 4202, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378725

RESUMO

Hearing loss is the most predominant sensory defect occurring in pediatrics, of which, 66% cases are attributed to genetic factors. The prevalence of hereditary hearing loss increases in consanguineous populations, and the prevalence of hearing loss in Qatar is 5.2%. We aimed to investigate the genetic basis of nonsyndromic hearing loss (NSHL) in Qatar and to evaluate the diagnostic yield of different genetic tests available. A retrospective chart review was conducted for 59 pediatric patients with NSHL referred to the Department of Adult and Pediatric Medical Genetics at Hamad Medical Corporation in Qatar, and who underwent at least one genetic test. Out of the 59 patients, 39 were solved cases due to 19 variants in 11 genes and two copy number variants that explained the NSHL phenotype. Of them 2 cases were initially uncertain and were reclassified using familial segregation. Around 36.8% of the single variants were in GJB2 gene and c.35delG was the most common recurrent variant seen in solved cases. We detected the c.283C > T variant in FGF3 that was seen in a Qatari patient and found to be associated with NSHL for the first time. The overall diagnostic yield was 30.7%, and the diagnostic yield was significantly associated with genetic testing using GJB2 sequencing and using the hearing loss (HL) gene panel. The diagnostic yield for targeted familial testing was 60% (n = 3 patients) and for gene panel was 50% (n = 5). Thus, we recommend using GJB2 gene sequencing as a first-tier genetic test and HL gene panel as a second-tier genetic test for NSHL. Our work provided new insights into the genetic pool of NSHL among Arabs and highlights its unique diversity, this is believed to help further in the diagnostic and management options for NSHL Arab patients.


Assuntos
Surdez , Perda Auditiva , Adulto , Humanos , Criança , Conexinas/genética , Conexina 26/genética , Mutação , Estudos Retrospectivos , Catar , Surdez/genética , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética
7.
Sci Rep ; 14(1): 362, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172182

RESUMO

This study aimed to explore the molecular epidemiology characteristics of deafness susceptibility genes in neonates in northern Guangdong and provide a scientific basis for deafness prevention and control. A total of 10,183 neonates were recruited between January 2018 and December 2022 at Yuebei People's Hospital. Among these, a PCR hybridization screening group of 8276 neonates was tested for four deafness genes: GJB2, SLC26A4, mtDNA, and GJB3 by PCR hybridization. Another group used next-generation sequencing (NGS) to detect genetic susceptibility genes in 1907 neonates. In PCR hybridization screening group, 346 (4.18%) of 8276 neonates were found to be carriers of the deafness gene. Among these, 182 (2.2%) had GJB2 variants, 114 (1.38%) had SLC26A4 variants, 35 (0.42%) had mtDNA variants, and 15 (0.18%) had GJB3 variants. In NGS Screening Group, 195 out of 1907 neonates were found to be carriers of the deafness gene, with a positive rate of 10.22%. Among these, 137 (7.18%) had GJB2 variants, 41 (2.15%) had SLC26A4 variants, 11 (0.58%) had mtDNA variants, and 6 (0.31%) had GJB3 variants. The prevalence of deafness gene variants was high in Northern Guangdong Province. The most common gene for deafness was GJB2, followed by SLC26A4 and mtDNA. GJB3 variants are rare. Compared with PCR hybridization method, NGS technology can expand the screening scope and greatly improve the detection rate of deafness genes. The c.109G>A of GJB2 was found to occur at a high frequency, which should be considered. Therefore, it is important to conduct neonatal deafness gene screening to prevent and control hereditary deafness.


Assuntos
Conexinas , Surdez , Recém-Nascido , Humanos , Conexinas/genética , Conexina 26/genética , Mutação , Análise Mutacional de DNA , Surdez/epidemiologia , Surdez/genética , Surdez/diagnóstico , DNA Mitocondrial/genética , China/epidemiologia
8.
Sci Rep ; 14(1): 454, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172427

RESUMO

Deafness is a common sensory disorder. In China, approximately 70% of hereditary deafness originates from four common deafness-causing genes: GJB2, SLC26A4, GJB3, and MT-RNR1. A single-tube rapid detection method based on 2D-PCR technology was established for nine mutation sites in the aforementioned genes, and Sanger sequencing was used to verify its reliability and accuracy. The frequency of hotspot mutations in deafness genes was analysed in 116 deaf students. 2D-PCR identified 27 genotypes of nine loci according to the melting curve of the FAM, HEX, and Alexa568 fluorescence channels. Of the 116 deaf patients, 12.9% (15/116) carried SLC26A4 mutations, including c.919-2A > G and c.2168A > G (allele frequencies, 7.3% and 2.2%, respectively). The positivity rate (29.3%; 34/116) was highest for GJB2 (allele frequency, 15.9% for c.235delC, 6.0% for c.299_300delAT, and 2.6% for c.176-191del16). Sanger sequencing confirmed the consistency of results between the detection methods based on 2D-PCR and DNA sequencing. Common pathogenic mutations in patients with non-syndromic deafness in Changzhou were concentrated in GJB2 (c.235delC, c.299_300delAT, and c.176-191del16) and SLC26A4 (c.919-2A > G and c.2168 A > G). 2D-PCR is an effective method for accurately and rapidly identifying deafness-related genotypes using a single-tube reaction, and is superior to DNA sequencing, which has a high cost and long cycle.


Assuntos
Conexinas , Surdez , Humanos , Conexinas/genética , Conexina 26/genética , Reprodutibilidade dos Testes , RNA Ribossômico/genética , Análise Mutacional de DNA , Mutação , Surdez/diagnóstico , Surdez/genética , China
9.
Int J Pediatr Otorhinolaryngol ; 176: 111777, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029595

RESUMO

OBJECTIVES: The molecular etiology of non-syndromic hearing loss (NSHL) in Southeastern China (Fujian) has not been precisely identified. our study selected patients with NSHL and analyzed their causative genes, which helped to improve the accuracy of the diagnosis of hereditary hearing loss (HHL) and its treatment. METHODS: 251 unrelated patients who attended the otolaryngology clinic of Fujian Maternal and Child Health Hospital with hearing loss were enrolled to our study. All patients had genetic tests and listening tests, of which 251 were diagnosed with NSHL. In addition, we used whole-exome sequencing (WES) in a patient who has a significant family history of HHL but negative for gene chip testing, as well as in his family members. RESULT: Among of 251 patients, Nucleotide changes were found in 63 cases (25.09%), including 34 located in GJB2(13.5%, including 235delC and 299_300delAT), 13 located in SLC26A4(5.18%, including c.919-2G > A and 2168 A > G), 1 located in GJB3(0.4%,538C > T) and 16 located in mtDNA12SrRNA (6.37%,1555 A > G). In addition, we discuss the process of identifying novel PLS1 mutations from 251 patients. CONCLUSION: Our results demonstrate the conventional deafness gene mutation in 251 NSHL patients in Fujian, China. Compared with the other area of China, we have a lower detection rate, but GJB2 235delC remains the most common mutation in Fujian. In addition, we discuss the process of discovering novel mutation locus for deafness, which provides an understanding for deafness diagnosis and genetic testing.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Criança , Humanos , China , Conexina 26/genética , Conexinas/genética , Surdez/diagnóstico , Surdez/genética , Análise Mutacional de DNA , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Transportadores de Sulfato/genética
10.
Mol Genet Genomic Med ; 12(1): e2324, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037722

RESUMO

BACKGROUND: To analyze the genotype distribution and frequency of hearing loss genes in newborn population and evaluate the clinical value of genetic screening policy in China. METHODS: Genetic screening for hearing loss was offered to 84,029 neonates between March 2019 and December 2021, of whom 77,647 newborns accepted the screening program with one-year follow-up. The genotyping of 15 hot spot variants in GJB2, GJB3, SLC26A4, and MT-RNR1 was performed on microarray platform. RESULTS: A total of 3.05% (2369/77,647) newborns carried at least one genetic hearing loss-associated variant, indicated for early preventive management. The carrier frequency of GJB2 gene was the highest, at 1.48% (1147/77,647), followed by SLC26A4 gene at 1.07% (831/77,647), and GJB3 gene at 0.23% (181/77,647). GJB2 c.235delC variant and SLC26A4 IVS7-2A>G variant were the most common allelic variants with allele frequency of 0.6304% (979/155,294) and 0.3992% (620/155,294), respectively. 10 children are identified as homozygous or compound heterozygous for pathogenic variants (4 in GJB2, 6 in SLC26A4), and 7 of these infants had passed the hearing screening. Following up of the genetically screened newborns revealed that genetic screening detected more hearing-impaired infants than hearing screening alone. Genetic screening helped identify the infants who had passed the initial hearing screening, and reduced time for diagnosis and intervention of hearing aid. In addition, we identified 234 newborns (0.30%, 234/77,647) susceptible to preventable aminoglycoside antibiotic ototoxicity undetectable by hearing screening. CONCLUSION: We performed the largest-scale neonatal carrier screening for hearing loss genes in Southeast China. Our results indicated that genetic screening is an important complementation to conventional hearing screening. Our practice and experience may facilitate the application and development of neonatal genetic screening policy in mainland China.


Assuntos
Surdez , Perda Auditiva , Lactente , Criança , Recém-Nascido , Humanos , Seguimentos , Conexinas/genética , Conexina 26/genética , Mutação , Testes Genéticos/métodos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Surdez/genética
11.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069086

RESUMO

We aimed to investigate whether the degree of hearing loss with GJB2 mutations could be predicted by distinguishing between truncating and non-truncating mutations and whether the genotype could predict the hearing loss level. Additionally, we examined the progression of hearing loss in individuals monitored for over 2 years for an average of 6.9 years. The proportion of truncating mutations was higher in patients with profound and severe hearing loss, but it was not accurate enough to predict the degree of hearing loss. Via genotype analysis, mutations of the p.Arg143Trp variants were associated with profound hearing loss, while mutations of the p.Leu79Cysfs*3 allele exhibited a wide range of hearing loss, suggesting that specific genotypes can predict the hearing loss level. Notably, there were only three cases of progression in four ears, all of which involved the p.Leu79Cysfs*3 mutation. Over the long-term follow-up, 4000 Hz was significant, and there was a trend of progression at 250 Hz, suggesting that close monitoring at these frequencies during follow-up may be crucial to confirm progression. The progression of hearing loss was observed in moderate or severe hearing loss cases at the time of the initial diagnosis, emphasizing that children with this level of hearing loss need regular follow-ups.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Criança , Humanos , Conexina 26/genética , Conexinas/genética , Surdez/genética , Seguimentos , Genótipo , Audição , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Fenótipo
12.
Genes (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38002950

RESUMO

BACKGROUND: This study aimed to describe the distribution of the genotype and allele frequencies of GJB2 variants in the Chinese population of the Dongfeng Tongji cohort and to analyze the features of the hearing phenotype. METHODS: We used data from 9910 participants in the Dongfeng Tongji cohort in 2013 and selected nine GJB2 variants. Pure tone audiometry was employed to measure hearing. Differences in genotype and allele frequencies were analyzed via chi-squared test or Fisher's exact test. RESULTS: Of the 9910 participants, 5742 had hearing loss. The genotype frequency of the GJB2 variant c.109G>A was statistically significantly distributed between the normal and impaired hearing groups, but not for the variant c.235delC. A higher frequency of the c.109G>A homozygous genotype was found in the hearing loss group (0.5%) than in the normal hearing group (0.1%). Patients with c.109G>A and c.235delC homozygous mutations exhibited varying degrees of hearing loss, mainly presenting sloping and flat audiogram shapes. CONCLUSIONS: A significant difference was found in the genotype frequency of the GJB2 variant c.109G>A between the case and control groups, but not in that of the variant c.235delC. Different degrees of hearing loss and various audiogram shapes were observed in patients with c.109G>A and c.235delC homozygous mutations.


Assuntos
Conexina 26 , Surdez , Perda Auditiva , Humanos , Conexina 26/genética , Surdez/genética , População do Leste Asiático , Frequência do Gene , Genótipo , Audição , Perda Auditiva/genética , Fenótipo
13.
Biomolecules ; 13(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37892203

RESUMO

One of the most common forms of genetic deafness has been predominantly associated with pathogenic variants in the GJB2 gene, encoding transmembrane protein connexin 26 (Cx26). The Cx26 molecule consists of an N-terminal domain (NT), four transmembrane domains (TM1-TM4), two extracellular loops (EL1 and EL2), a cytoplasmic loop, and a C-terminus (CT). Pathogenic variants in the GJB2 gene, resulting in amino acid substitutions scattered across the Cx26 domains, lead to a variety of clinical outcomes, including the most common non-syndromic autosomal recessive deafness (DFNB1A), autosomal dominant deafness (DFNA3A), as well as syndromic forms combining hearing loss and skin disorders. However, for rare and poorly documented variants, information on the mode of inheritance is often lacking. Numerous in vitro studies have been conducted to elucidate the functional consequences of pathogenic GJB2 variants leading to amino acid substitutions in different domains of Cx26 protein. In this work, we summarized all available data on a mode of inheritance of pathogenic GJB2 variants leading to amino acid substitutions and reviewed published information on their functional effects, with an emphasis on their localization in certain Cx26 domains.


Assuntos
Conexina 26 , Perda Auditiva , Humanos , Conexina 26/genética , Conexinas/genética , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação
14.
Int J Pediatr Otorhinolaryngol ; 174: 111744, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801830

RESUMO

BACKGROUND: HL is the second most common congenital disability in China, and its high incidence brings a serious burden of medical and educational sequelae. HL genetic screening enables the identification of individuals with inherited HL and carriers in a large scale. OBJECTIVE: This study aimed to measure the detection rates of hearing loss (HL)-associated gene mutations in the Gannan population. The molecular etiology and risk factors of hereditary HL were also analyzed. METHODS: In total, 119,606 newborns from 18 districts of Gannan were enrolled in this multi-center study conducted between April 2019 and April 2021. Otoacoustic Emission (OAE) was used for primary hearing screening 3 days after birth in quiet conditions, and OAE combined with automated auditory brainstem response (AABR) was applied 29-42 days after birth for those who failed or missed the initial screening. Meanwhile, high-throughput sequencing of hotspot HL-associated mutations in GJB2, GJB3, MTRNR1, and SLC26A4 were performed. RESULTS: Among the 119,606 newborns, 7796 (6.52%) failed the hearing screening. Genetic screening revealed that 5092 neonates (4.26%) carried HL-associated mutations. The detection rate of GJB2, SLC26A4, MTRNR1 and GJB3 mutations were 2.09%, 1.51%, 0.42% and 0.24%, respectively. The most prevalent variant was GJB2 c.235delC (1.74%). The second most prevalent variant was SLC26A4 c.919-2A > G (0.93%). The population who failed the hearing screening had a lower proportion (24.64%) of SLC26A4 gene variants compared to the population who passed (37.46%). Genetic screening identified 4612 (3.86%) carriers who were normal in hearing screenings. The concurrent hearing and genetic screening identified 480 (0.40%) neonates at high risk for hereditary HL. CONCLUSIONS: The results of this study suggest that the concurrent hearing screening and high-throughput genetic screening would greatly improve the effectiveness of newborn HL programs. This integration also facilitates the management of congenital HL, and aids in the prevention of aminoglycoside antibiotics-induced HL.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Recém-Nascido , Conexinas/genética , Conexina 26/genética , Triagem Neonatal/métodos , Perda Auditiva/diagnóstico , Perda Auditiva/epidemiologia , Perda Auditiva/genética , Surdez/genética , Mutação , Perda Auditiva Neurossensorial/diagnóstico , China/epidemiologia
15.
PLoS One ; 18(8): e0289247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561809

RESUMO

Autosomal recessive non-syndromic hearing loss (ARNSHL) is a public health concern in the Iranian population, with an incidence of 1 in 166 live births. In the present study, the whole exome sequencing (WES) method was applied to identify the mutation spectrum of NSHL patients negative for GJB2 gene mutations. First, using ARMS PCR followed by Sanger sequencing of the GJB2 gene, 63.15% of mutations in patients with NSHL were identified. Among the identified mutations in GJB2:p.Val43Met and p.Gly21Arg were novel. The remaining patients were subjected to WES, which identified novel mutations including MYO15A:p.Gly39LeufsTer188, ADGRV1:p.Ser5918ValfsTer23, MYO7A: c.5856+2T>c (splicing mutation), FGF3:p.Ser156Cys. The present study emphasized the application of WES as an effective method for molecular diagnosis of NSHL patients negative for GJB2 gene mutations in the Iranian population.


Assuntos
Conexinas , Surdez , Humanos , Conexinas/genética , Conexina 26/genética , Irã (Geográfico) , Sequenciamento do Exoma , Surdez/genética , Mutação , Linhagem
16.
J Int Adv Otol ; 19(4): 283-287, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37528592

RESUMO

BACKGROUND: Hainan Province is the southernmost island in China, far from the mainland, and the resident population changes little. In order to understand the mutation spectrum in Hainan and provide effective genetic counseling for deaf people, we carried out genetic analysis on the non-comprehensive hearing impairment in this population. Therefore, in this study, 183 children with moderate sensorineural deafness in the northeast of Hainan were analyzed with susceptibility gene carrying and gene mutation, providing some reference for hainan to guide the prevention and treatment of deafness. METHODS: Complete clinical evaluations were performed on 183 unrelated patients with a non-syndromic hearing impairment from Hainan Province. Each subject was screened for common mutations using the matrix-assisted laser desorption ionization-time of flight mass spectrometry, including GJB2 c.35delG,c.235delC,c.299_300del AT,c.176_191del16,c.167delT; GJB3 c.538 C>T,c.547G >A;SLC26A4 IVS7-2 A>G,c.2168 A>G,c.1174A>T,c.1229 C>T,c.1226G>A,c.1975G>C,c.2027T>A,c.2162C>T,c.281C>T,c.589G>A,IVS15+5G>A; and mtRNA 1494 C>T,1555 A>G. RESULTS: Genetic analysis showed that GJB2, SLC26A4, and mitochondrial M. 1555A > G mutations accounted for 7.10%, 8.74%, and 0.55% of the etiology of non-syndromic hearing impairment, respectively. Common mutations include GJB2 C. 235delC, SLC26A4 c.I vs7-2a →G, C. 2168A→G, and mitochondrial M. 1555A > G. The total mutation rate in Hainan was 16.39%. CONCLUSION: Our study is the first one to carry out genetic analysis on non-syndromic hearing impairment in Hainan. The results show that in the cases of non-syndromic hearing impairment in these areas, there is a clear genetic cause accounted for 16.39%, and the mutation hot spots are mainly GJB2 and SLC26A4, and SLC26A4 is the most common mutation site. This study provides useful and targeted information for genetic counseling of deafness in people with non-syndromic hearing impairment in Hainan.


Assuntos
Surdez , Perda Auditiva , Criança , Humanos , Conexinas/genética , Conexina 26/genética , Surdez/genética , Povo Asiático/genética , DNA Mitocondrial/genética , RNA Ribossômico/genética , Transportadores de Sulfato/genética , Mutação/genética
17.
Ear Hear ; 44(6): 1423-1429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37271870

RESUMO

BACKGROUND: Gap junction protein beta 2 ( GJB2 ) p.V37I mutations are the most important hereditary cause of sensorineural hearing loss (SNHL) in Taiwan. Hearing outcomes are associated with hearing levels at baseline and the duration of follow-up. However, the audiological features of GJB2 p.V37I mutations in the adult population are unknown. The objectives of the present study were to investigate the audiological features, progression rate, and allele frequency of GJB2 p.V37I mutations among an adult Taiwanese population. METHODS: Subjects of this case-control study were chosen from 13,580 participants of the Taiwan Precision Medicine Initiative. The genetic variations of GJB2 p.V37I were determined by polymerase chain reaction. We analyzed existing pure-tone threshold data from 38 individuals who were homozygous or compound heterozygotes for GJB2 p.V37I, 129 who were heterozygotes, and 602 individuals who were wild-type. Phenome-wide association studies (PheWAS) analysis was also performed to identify phenotypes associated with GJB2 p.V37I. RESULTS: The minor allele frequency of GJB2 p.V37I was 0.92% in our study population. The mean hearing level of participants with a p.V37I mutation indicated moderate to severe hearing loss with 38.2% ± 22.3% binaural hearing impairment. GJB2 p.V37I was associated with an increased risk of hearing disability (odds ratio: 21.46, 95% confidence interval: 8.62 to 53.44, p < 0.001) in an autosomal recessive pattern. In addition, PheWAS discovered a significant association between GJB2 p.V37I and fracture of the humerus. GJB2 p.V37I is a pathogenic and prevalent variant of SNHL among the adult population. CONCLUSIONS: The present study recommends patients with known GJB2 p.V37I mutations receive regular audiometric evaluation and genetic counseling. Early assistive listening device intervention is suggested to improve the quality of hearing.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Adulto , Humanos , Estudos de Casos e Controles , Conexina 26/genética , Conexinas/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 815-820, 2023 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-37368382

RESUMO

OBJECTIVE: To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province. METHODS: Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test. RESULTS: Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05). CONCLUSION: Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.


Assuntos
Conexinas , Surdez , Recém-Nascido , Humanos , Conexinas/genética , Estudos Retrospectivos , Surdez/diagnóstico , Surdez/genética , Conexina 26/genética , Triagem Neonatal/métodos , Mutação , Testes Genéticos/métodos , China/epidemiologia , Audição , Análise Mutacional de DNA
19.
Cell Mol Life Sci ; 80(6): 148, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178259

RESUMO

Mutations in GJB2 (Gap junction protein beta 2) are the most common genetic cause of non-syndromic hereditary deafness in humans, especially the 35delG and 235delC mutations. Owing to the homozygous lethality of Gjb2 mutations in mice, there are currently no perfect mouse models carrying Gjb2 mutations derived from patients for mimicking human hereditary deafness and for unveiling the pathogenesis of the disease. Here, we successfully constructed heterozygous Gjb2+/35delG and Gjb2+/235delC mutant mice through advanced androgenic haploid embryonic stem cell (AG-haESC)-mediated semi-cloning technology, and these mice showed normal hearing at postnatal day (P) 28. A homozygous mutant mouse model, Gjb235delG/35delG, was then generated using enhanced tetraploid embryo complementation, demonstrating that GJB2 plays an indispensable role in mouse placenta development. These mice exhibited profound hearing loss similar to human patients at P14, i.e., soon after the onset of hearing. Mechanistic analyses showed that Gjb2 35delG disrupts the function and formation of intercellular gap junction channels of the cochlea rather than affecting the survival and function of hair cells. Collectively, our study provides ideal mouse models for understanding the pathogenic mechanism of DFNB1A-related hereditary deafness and opens up a new avenue for investigating the treatment of this disease.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Camundongos , Animais , Conexinas/genética , Conexina 26/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Mutação , Audição
20.
Genes (Basel) ; 14(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37239361

RESUMO

The GJB2 (Cx26) gene pathogenic variants are associated with autosomal recessive deafness type 1A (DFNB1A, OMIM #220290). Direct sequencing of the GJB2 gene among 165 hearing-impaired individuals living in the Baikal Lake region of Russia identified 14 allelic variants: pathogenic/likely pathogenic-nine variants, benign-three variants, unclassified-one variant, and one novel variant. The contribution of the GJB2 gene variants to the etiology of hearing impairment (HI) in the total sample of patients was 15.8% (26 out of 165) and significantly differed in patients of different ethnicity (5.1% in Buryat patients and 28.9% in Russian patients). In patients with DFNB1A (n = 26), HIs were congenital/early onset (92.3%), symmetric (88.5%), sensorineural (100.0%), and variable in severity (moderate-11.6%, severe-26.9% or profound-61.5%). The reconstruction of the SNP haplotypes with three frequent GJB2 pathogenic variants (c.-23+1G>A, c.35delG or c.235delC), in comparison with previously published data, supports a major role of the founder effect in the expansion of the c.-23+1G>A and c.35delG variants around the world. Comparative analysis of the haplotypes with c.235delC revealed one major haplotype G A C T (97.5%) in Eastern Asians (Chinese, Japanese and Korean patients) and two haplotypes, G A C T (71.4%) and G A C C (28.6%), in Northern Asians (Altaians, Buryats and Mongols). The variable structure of the c.235delC-haplotypes in Northern Asians requires more studies to expand our knowledge about the origin of this pathogenic variant.


Assuntos
Conexina 26 , Perda Auditiva , Humanos , Conexina 26/genética , Perda Auditiva/genética , Mutação , Federação Russa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...